The purpose of this project was to determine if the increased surface area from aluminum cans could affect the efficiency in a sealed solar heating unit in a positive manner. Efficiency was measured by the highest temperature of air exiting the unit coupled with the highest speed and volume of air exiting the unit. We believed that the increased surface area due to the aluminum cans would have a drastic and positive effect on the expelled air as the aluminum cans would absorb more heat, opposed to a blank unit, and would not sufficiently impede airflow. Therefore, an aluminum can formation within the sealed heating unit would yield the best results. However, we found that a sealed heating unit with no aluminum cans to impede the airflow was the most effective configuration because the air remained the warmest and the air speed the quickest out of the tests that were performed. As it turned out, the greatest deciding factor of efficiency within the unit was the amount of direct sunlight the unit received rather than an increase in surface area.