In this experiment, the objective was to observe how wind direction affects temperature inversions. The scientist wanted to distinguish what kinds of temperature inversions are regularly produced by convection in the atmosphere and how inversions may aid to the rotation of pollutants in the air. This project will assist people in understanding how smog, acid rain, and other pollutants stay trapped in the air and make them aware of the causes pollution can bring. Two experiments were conducted. The first experiment demonstrated how a temperature inversion occurs by convection. This was done by gradually pouring hot tea over cold water. The scientist timed how long the hot tea remained stagnant and layered over the cold water before it began to mix. The average time that it took was 79.70 seconds. The average time it took the cold water to sit over the hot water was 0.0 seconds. The second experiment showed different layers of a temperature inversion in an aquarium by using color. Salt water was used instead of hot tea. In the continuation, green food coloring was dropped into the aquarium and represented pollution. The scientist then stirred the pollutants around to see if they would disperse evenly throughout the inversion. After concluding this project, the scientist concluded the main reason for temperature inversions producing is convection. The scientist also thought if wind or a storm is to come into contact with an inversion, this would make the inversion and pollutants become dispersed or departed evenly throughout the atmosphere.