I studied the relationship between abstract algebra and young tableaux by using representation theory. I found sequences and patterns in tables which represented multiplied permutations and the amount of permutations I could do. Working with upside down L-shaped young tableaux created a systematical way of how I could permute the numbers and how my first generation general equation formulated. After compiling the data of the amount of legal young tableaux I could create, my general equation followed a specific pattern that generated a different question. My general equation consisted of N denoting the amount of elements in the tableau and I added or subtracted any number that would equal the number of legal tableaux. I found that all of the added or subtracted numbers in the equations for different amounts of boxes in the column went up by 2 and increased by 1 each time. I multiplied the permutations to get 3 or 2 numbered permutations and then organized them into a table. From there I found multiple patterns that I could use to generate these tables for any sized upside down L-shaped tableau. By using these permutations, I tried finding a closed equation where I had x -amount of boxes in the column, y – amount of boxes in the row, and z – the amount of elements in the tableau. I plan to work with larger tableaux and create computer generated tables to find more patterns and work with different shaped young tableaux.